• Latest
  • Trending
  • All
Starliner: NASA’s New Space Landing Strategy

Starliner: NASA’s New Space Landing Strategy

September 5, 2024
This concept shows an Earth-like world with clouds and liquid surface water orbiting a red dwarf star. Credit: Lynette Cook

New Research Reveals Clouds Can Amplify Signs of Life on Exoplanets

May 29, 2025
PSR B1509−58 – X-rays from Chandra are gold; infrared from WISE in red, green and blue/max (Credit : By NASA/CXC/SAO (X-Ray); NASA/JPL-Caltech (Infrared))

Confirmed: Stars Can Orbit Inside Each Other—And This One Did

May 28, 2025
ADVERTISEMENT
Credit: NGC 1754. Credit: HST.

NGC 1754: Hubble Reveals Secrets of One of the Universe’s Oldest Star Clusters

May 27, 2025
An artist's illustration of the planet K2-18b, one of the prime suspects to host life beyond this solar system.

Hope or Hype? The Truth About Life Signals on Distant Planet K2-18b

May 26, 2025
Supermassive black holes at the centers of galaxies emit radiation and ultra-fast winds into space. Here is an artist's visualization. Credit: NASA, JPL-Caltech

Black Hole Winds May Be Firing the Universe’s Most Powerful Particles

May 24, 2025
March Solar X-flare from IRIS and SDO

The Next Solar Superstorm Could Be Days Away—Are We Ready to Respond?

May 22, 2025
Artist's conception of a "Hot Jupiter", like Puli. Credit - ESO/L. Calçada.

The Planet That Hides in Time: How Astronomers Caught a Cosmic Phantom

May 21, 2025
An illustration of Jupiter with magnetic field lines emitting from its poles. Credit: Credit: K. Batygin

Scientists Just Found Evidence of a Supercharged Jupiter You’ve Never Met

May 20, 2025
This NASA/ESA Hubble Space Telescope image features a cloudscape in the Large Magellanic Cloud., a dwarf satellite galaxy of the Milky Way. Credit: ESA/Hubble & NASA, C. Murray

NASA Just Photographed a Galaxy That Looks Like Cotton Candy—and It’s Real

May 19, 2025
DESI has made the largest 3D map of our universe to date. Earth is at the center of this thin slice of the full map. Credit: Claire Lamman/DESI collaboration

Is the Universe Expanding Weirdly Because Dark Matter Is Evolving?

May 19, 2025
ESA astronaut Samantha Cristoforetti took this picture of aurora borealis from the ISS on Dec. 9, 2014

Auroras on Mars? Yes, and Astronauts Might See Them Too

May 18, 2025
This illustration depicts a conceptual Lunar Crater Radio Telescope on the Moon’s far side. The early-stage concept is being studied under grant funding from the NASA Innovative Advanced Concepts program but is not a NASA mission. Credit: Vladimir Vustyansky

Dark Ages Explorer: How Europe Plans to Illuminate the Universe’s Oldest Secrets

May 17, 2025
ADVERTISEMENT
NASA Space News
No Result
View All Result
  • Home
  • News
  • Privacy Policy
  • ABOUT US
  • DISCLAIMER
  • Contact Us
NASA Space News
No Result
View All Result
ADVERTISEMENT
Home News

Starliner: NASA’s New Space Landing Strategy

by nasaspacenews
September 5, 2024
in News, Others
0
Starliner: NASA’s New Space Landing Strategy

NASA and Boeing teams work around Boeing’s Starliner spacecraft after it landed at White Sands Missile Range’s Space Harbor, May 25, 2022, in New Mexico for the company’s Boeing’s Orbital Flight Test-2. NASA/Bill Ingalls

ADVERTISEMENT
Share on FacebookShare on Twitter

NASA and Boeing have been working tirelessly to ensure the safe return of the Starliner spacecraft from its missions to the International Space Station (ISS). The spacecraft’s return is a carefully coordinated process involving numerous checks, procedures, and safety measures that ensure both mission success and crew safety. Let’s explore the details of Starliner’s landing strategy, the science behind it, and why it marks an important milestone for future space missions.

Starliner’s Landing Criteria and Preparations

Before any landing, the safety of the spacecraft, crew, and cargo is of utmost importance. To guarantee this, NASA and Boeing implement a comprehensive set of landing criteria and checks 24 hours before the spacecraft undocks from the ISS. These checks involve precise weather and operational evaluations for potential landing sites, such as White Sands Missile Range in New Mexico, Willcox Playa in Arizona, Dugway Proving Ground in Utah, and Edwards Air Force Base in California as a contingency site. Wind speeds must be under 6 mph for crewed flights and under 13 mph for uncrewed ones. Ground temperatures must be above 15 degrees Fahrenheit, and the visibility must extend to at least one nautical mile. Additionally, there should be no thunderstorms, precipitation, or lightning within a 22-mile radius.

A miscalculation or adverse weather could jeopardize the mission and pose risks to both the spacecraft and crew. By monitoring these variables closely, NASA ensures that the landing process has the highest possible chances of success. If conditions are unfavorable at a planned site, they delay the deorbit burn and target another landing attempt within the next 24 to 31 hours.

The Re-Entry and Landing Process

Re-entry into Earth’s atmosphere is one of the most critical phases of any space mission. For Starliner, this process begins with a series of carefully coordinated maneuvers. After undocking from the ISS, Starliner performs several departure burns to distance itself from the space station. This is followed by a deorbit burn lasting approximately 60 seconds, which slows the spacecraft enough to initiate re-entry into Earth’s atmosphere. Immediately after the deorbit burn, the spacecraft’s service module separates and burns up over the southern Pacific Ocean. This separation clears the way for the command module—the part that contains the crew and critical systems—to proceed with re-entry.

NASA and Boeing teams work around Boeing’s Starliner spacecraft after it landed at White Sands Missile Range’s Space Harbor, May 25, 2022, in New Mexico for the company’s Boeing’s Orbital Flight Test-2.
NASA/Bill Ingalls

During re-entry, Starliner experiences extreme temperatures as it encounters atmospheric friction. The spacecraft’s heat shields, both forward and base, are critical in protecting it from temperatures that can reach up to 3,000 degrees Fahrenheit. As the spacecraft descends, it deploys a series of parachutes to slow its speed. At 30,000 feet, the forward heat shield is jettisoned, releasing two drogue parachutes that stabilize the spacecraft’s descent. These are followed by three main parachutes that further reduce the descent speed. At 3,000 feet, the base heat shield is released, allowing six landing airbags to inflate, cushioning the impact as the Starliner lands at a gentle 4 mph.

This sequence of actions is crucial for ensuring a controlled descent and a safe landing. Unlike traditional water landings, the Starliner’s ability to land on solid ground allows for faster recovery operations and reduces the wear and tear on the spacecraft, making it easier and quicker to refurbish for future missions.

Coordinated Recovery Operations

After the Starliner safely touches down, a highly coordinated recovery operation is initiated to ensure the spacecraft’s safety and quick turnaround for future use. The recovery process is divided into five distinct teams, each responsible for specific tasks to secure the spacecraft, ensure crew safety, and manage the retrieval of time-sensitive cargo.

The first team to approach the spacecraft is the Gold Team, which uses specialized equipment to detect any remaining hypergolic fuels that could pose a hazard. Hypergolic fuels are highly reactive and can cause serious damage if not fully burned off during re-entry. By confirming that these fuels are no longer a threat, the team ensures a safe environment for the subsequent recovery teams.

ADVERTISEMENT

Once the Gold Team gives the all-clear, the Silver Team moves in to electrically ground the spacecraft and stabilize it. This step prevents any static discharge or electrical hazards that could damage the spacecraft or its contents. The Green Team follows, providing power and cooling to the crew module since it is powered down during descent. Maintaining optimal conditions is essential for preserving both the spacecraft’s systems and any critical experiments or samples being returned from the ISS.

Next is the Blue Team, which documents the recovery process for public dissemination and future reviews. This documentation is crucial for improving future missions, providing a detailed record of every step taken during recovery. Finally, the Red Team, which includes fire rescue, emergency medical technicians, and human factors engineers, approaches the spacecraft to open the hatch and retrieve time-critical cargo.

Importance for Future Space Missions

The Starliner’s ability to perform land-based landings offers several advantages that are crucial for the future of space missions. One of the most significant benefits is the reduced time needed for recovery and refurbishment. Unlike water landings, which require extensive efforts to retrieve and transport the spacecraft back to a facility for refurbishment, land-based landings allow for faster access to the spacecraft. This quicker turnaround means that Starliner can be prepared for its next mission much sooner, reducing downtime and overall costs.

Furthermore, the ability to recover the spacecraft quickly and efficiently aligns with NASA’s goals under the Commercial Crew Program. This program aims to provide safe, reliable, and cost-effective transportation for astronauts to and from the ISS. By fostering competition between Boeing’s Starliner and SpaceX’s Crew Dragon, NASA encourages innovation and cost reduction in human spaceflight. This competition drives technological advancements that are not only beneficial for NASA but also have the potential to open up space travel to a wider range of participants, including private companies and international partners.

Lessons Learned and Future Improvements

Every mission presents an opportunity to learn and improve, and the Starliner program is no exception. Past missions have already led to several important updates, such as improvements in software, safety protocols, and communication systems. For example, after the initial test flights, Boeing implemented software updates to address issues related to navigation and communication with mission control. These improvements are essential for ensuring the safety and reliability of future crewed and uncrewed missions.

The iterative process of testing, learning, and refining is key to advancing space exploration. As NASA and Boeing continue to collaborate on the Starliner program, they remain focused on enhancing the spacecraft’s reliability and safety. This commitment to continuous improvement ensures that the Starliner will be better prepared to meet the demands of future space missions, whether they involve transporting astronauts to the ISS or supporting longer-duration missions to the Moon and Mars.

Conclusion

NASA’s Starliner mission, in partnership with Boeing, represents a monumental leap forward in space exploration and spacecraft recovery. The mission’s focus on safe landings, coordinated recovery operations, and continuous improvements sets a high standard for future space missions. As NASA continues to work closely with commercial partners, the Starliner program demonstrates the value of public-private partnerships in driving innovation and expanding the possibilities of human space exploration.

With each successful mission, we gain valuable insights that help shape the future of space travel. The lessons learned from the Starliner program will not only benefit missions to the ISS but also serve as a foundation for more ambitious endeavors, including journeys to the Moon, Mars, and beyond. As we look to the future, the collaboration between NASA, Boeing, and other industry partners will be crucial in achieving our goals and exploring the vast unknowns of space.

Reference:

Johnson Space Center Office of Communications. (2024, September 5). NASA’s Boeing Starliner Mission Landing Criteria, Timeline. NASA. https://www.nasa.gov/commercialcrew

Tags: astronaut recoveryBoeingBoeing Starliner landingCommercial Crew Programcrew safetyEdwards Air Force Basefuture space missionsInternational Space StationISSNASANASA missionsorbital flightre-entry proceduresrecovery operationsspace capsule landingspace explorationspace innovationspace landing sitesspace missionspace newsspace safetyspace sciencespace technologyspacecraft landingspacecraft refurbishmentspacecraft reusabilityStarlinerStarliner spacecraftWhite Sands Missile Range

FEATURED POST

This concept shows an Earth-like world with clouds and liquid surface water orbiting a red dwarf star. Credit: Lynette Cook

New Research Reveals Clouds Can Amplify Signs of Life on Exoplanets

May 29, 2025
PSR B1509−58 – X-rays from Chandra are gold; infrared from WISE in red, green and blue/max (Credit : By NASA/CXC/SAO (X-Ray); NASA/JPL-Caltech (Infrared))

Confirmed: Stars Can Orbit Inside Each Other—And This One Did

May 28, 2025
Credit: NGC 1754. Credit: HST.

NGC 1754: Hubble Reveals Secrets of One of the Universe’s Oldest Star Clusters

May 27, 2025
An artist's illustration of the planet K2-18b, one of the prime suspects to host life beyond this solar system.

Hope or Hype? The Truth About Life Signals on Distant Planet K2-18b

May 26, 2025

EDITOR PICK'S

New Research Reveals Clouds Can Amplify Signs of Life on Exoplanets

May 29, 2025

Confirmed: Stars Can Orbit Inside Each Other—And This One Did

May 28, 2025

NGC 1754: Hubble Reveals Secrets of One of the Universe’s Oldest Star Clusters

May 27, 2025

Hope or Hype? The Truth About Life Signals on Distant Planet K2-18b

May 26, 2025

Black Hole Winds May Be Firing the Universe’s Most Powerful Particles

May 24, 2025

The Next Solar Superstorm Could Be Days Away—Are We Ready to Respond?

May 22, 2025

The Planet That Hides in Time: How Astronomers Caught a Cosmic Phantom

May 21, 2025

STAY CONNECTED

Recent News

This concept shows an Earth-like world with clouds and liquid surface water orbiting a red dwarf star. Credit: Lynette Cook

New Research Reveals Clouds Can Amplify Signs of Life on Exoplanets

May 29, 2025
PSR B1509−58 – X-rays from Chandra are gold; infrared from WISE in red, green and blue/max (Credit : By NASA/CXC/SAO (X-Ray); NASA/JPL-Caltech (Infrared))

Confirmed: Stars Can Orbit Inside Each Other—And This One Did

May 28, 2025

Category

  • Asteroid
  • Astrobiology
  • Astrology
  • Astronomy
  • Astrophotography
  • Astrophysics
  • Auroras
  • Black holes
  • Comets
  • Cosmology
  • Dark energy
  • Dark Matter
  • Earth
  • Euclid
  • Exoplanets
  • Galaxies
  • Jupiter
  • JWST
  • Mars
  • Mercury
  • Meteor showers
  • Moon
  • Neptune
  • News
  • Others
  • Planets
  • QuantumPhysics
  • quasars
  • Rocks
  • Saturn
  • solar storm
  • Solar System
  • stars
  • sun
  • Universe
  • Uranus
  • Venus
  • Voyager

We bring you the latest news and updates in space exploration, innovation, and astronomy.

  • ABOUT US
  • CONTACT US
  • DISCLAIMER
  • PRIVACY POLICY

© 2025 NASA Space News

No Result
View All Result
  • Home
  • News
  • Privacy Policy
  • ABOUT US
  • DISCLAIMER
  • Contact Us

© 2025 NASA Space News

Welcome Back!

Sign In with Facebook
Sign In with Google
Sign In with Linked In
OR

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In

Add New Playlist