• Latest
  • Trending
  • All
Quarks in Chaos: Neutron Star Mergers and the Future of Physics

Quarks in Chaos: Neutron Star Mergers and the Future of Physics

August 15, 2024
Negative magnitudes of astronomical objects

Negative Magnitudes of Astronomical Objects: Why Brighter Means Negative

November 18, 2025
Matter swirling around black holes

Matter Swirling Around Black Holes: New Polarization Measurements

November 18, 2025
ADVERTISEMENT
Exoplanets In The Remnants Of A Dwarf Galaxy

Exoplanets in the remnants of a dwarf galaxy: VOYAGERS Survey Begins

November 18, 2025
Solar system is moving 3x faster

Solar System Is Moving 3x Faster Than Expected: Cosmology Crisis

November 17, 2025
Find Alien Life in Clouds

Find Alien Life in Clouds: New Detection Method for Exoplanets

November 17, 2025
Cosmic ray puzzle resolved

Cosmic Ray Puzzle Resolved: Black Holes Drive Ultra-High-Energy Particles

November 17, 2025
Is the Universe slowing down?

Is the Universe Slowing Down? New Evidence Suggests Deceleration

November 13, 2025
Life in the clouds on other worlds

Life in the clouds on other worlds: New Biosignature Detection Method

November 13, 2025
what happens on Mars today

What Happens on Mars Today: Dust Avalanches Move Quarter Annual Dust

November 13, 2025
Strongest solar flare of 2025

Sun Unleashes Strongest Solar Flare of 2025 From Sunspot AR4274

November 12, 2025
Habitable worlds in the universe

More habitable worlds in the universe: Planets make their own water

November 12, 2025
Oldest Stars Are Planet Killers

Oldest Stars Are Planet Killers: Aging Stars Destroy Close Planets

November 12, 2025
ADVERTISEMENT
NASA Space News
No Result
View All Result
  • Home
  • Missions
    SIMP-0136 weather report

    SIMP-0136 Weather Report Reveals Storms and Auroras on a Rogue World

    Moon-forming disk

    JWST Reveals the Chemistry Inside a Moon-forming disk

    Little Red Dots

    Are the “Little Red Dots” Really Black Hole Stars? What JWST Is Revealing About the Early Universe

    Pismis 24 Star Cluster

    Inside the Lobster Nebula: Pismis 24 Star Cluster Unveiled

    Comet Lemmon

    A Rare Cosmic Visitor: Will Comet Lemmon Light Up October Sky?

    Butterfly Star

    The Butterfly Star: How James Webb New Discovery Unlocks Secrets of Planet Formation

    James Webb Space Telescope

    A Cosmic Masterpiece: James Webb Space Telescope Reveals the Heart of a Stellar Nursery

    interstellar comet

    A Cosmic Visitor Lights Up Our Solar System: The Story of Interstellar Comet 3I/ATLAS

    Interstellar comet 3I/ATLAS

    How TESS Spotted the Interstellar Comet 3I/ATLAS Early—and What It Means for Science

  • Planets
  • Astrophysics
  • Technology
  • Research
  • About
  • Contact Us
NASA Space News
No Result
View All Result
ADVERTISEMENT
Home News

Quarks in Chaos: Neutron Star Mergers and the Future of Physics

by nasaspacenews
August 15, 2024
in News, Others, stars
0
Quarks in Chaos: Neutron Star Mergers and the Future of Physics

This artist's impression illustrates the merger of two neutron stars. Credit: NOIRLab/NSF/AURA/J. da Silva/Spaceengine

ADVERTISEMENT
Share on FacebookShare on Twitter

Recent research into neutron star mergers is shedding new light on one of the most elusive states of matter in the universe: quark matter. Neutron stars, the dense remnants of exploded massive stars, occasionally collide in violent events known as binary mergers. These mergers produce gravitational waves detectable on Earth and create conditions so extreme that they may allow quark matter, the building blocks of protons and neutrons, to form and flow freely.

When neutron stars merge, the intense gravitational forces rapidly distort their shapes and raise their internal temperatures, potentially transforming their internal structure. During these mergers, quark matter may form—an exotic state where quarks and gluons, usually confined within protons and neutrons, are liberated and able to move independently. This phenomenon, though theoretical, has been a focus of astrophysical research for years, and now, new studies are beginning to confirm these theories.

Scientists from the University of Helsinki and their colleagues have advanced our understanding of neutron star mergers by investigating a critical property known as bulk viscosity. Bulk viscosity measures how a system’s internal particle interactions resist changes in flow—essentially describing how “sticky” the system is during oscillations. This property becomes crucial in neutron star mergers, where radial oscillations occur, and can influence the dynamics of the collision.

The research, published in Physical Review Letters, combined two advanced theoretical approaches—string theory-based holography and perturbation theory. Holography, in this case, uses a higher-dimensional curved space to describe the behavior of quantum chromodynamics (QCD), the theory of strong interactions at the heart of neutron stars. Perturbation theory, widely used in particle physics, calculates physical quantities in power series, though it is only applicable at very high densities. By integrating both methods, the researchers were able to estimate the bulk viscosity of quark matter, finding that it peaks at much lower temperatures than previously thought.

ADVERTISEMENT

If future observations confirm the presence of quark matter during mergers, this could fundamentally change our understanding of the phases of matter in the universe. For example, gravitational wave data from observatories like LIGO and Virgo could be analyzed for signs of viscous effects, potentially indicating the presence of quark matter. The absence or presence of such effects would provide critical insights into the creation and properties of quark matter during these extreme events.

FEATURED POST

Negative magnitudes of astronomical objects

Negative Magnitudes of Astronomical Objects: Why Brighter Means Negative

November 18, 2025
Matter swirling around black holes

Matter Swirling Around Black Holes: New Polarization Measurements

November 18, 2025
Exoplanets In The Remnants Of A Dwarf Galaxy

Exoplanets in the remnants of a dwarf galaxy: VOYAGERS Survey Begins

November 18, 2025
Solar system is moving 3x faster

Solar System Is Moving 3x Faster Than Expected: Cosmology Crisis

November 17, 2025

EDITOR PICK'S

Negative Magnitudes of Astronomical Objects: Why Brighter Means Negative

November 18, 2025

Matter Swirling Around Black Holes: New Polarization Measurements

November 18, 2025

Exoplanets in the remnants of a dwarf galaxy: VOYAGERS Survey Begins

November 18, 2025

Solar System Is Moving 3x Faster Than Expected: Cosmology Crisis

November 17, 2025

Find Alien Life in Clouds: New Detection Method for Exoplanets

November 17, 2025

Cosmic Ray Puzzle Resolved: Black Holes Drive Ultra-High-Energy Particles

November 17, 2025

Is the Universe Slowing Down? New Evidence Suggests Deceleration

November 13, 2025

STAY CONNECTED

Recent News

Negative magnitudes of astronomical objects

Negative Magnitudes of Astronomical Objects: Why Brighter Means Negative

November 18, 2025
Matter swirling around black holes

Matter Swirling Around Black Holes: New Polarization Measurements

November 18, 2025

Category

  • Asteroid
  • Astrobiology
  • Astrology
  • Astronomy
  • Astrophotography
  • Astrophysics
  • Auroras
  • Black holes
  • Comets
  • Cosmology
  • Dark energy
  • Dark Matter
  • Earth
  • Euclid
  • Exoplanets
  • Galaxies
  • Jupiter
  • JWST
  • Mars
  • Mercury
  • Meteor showers
  • Missions
  • Moon
  • Neptune
  • News
  • Others
  • Planets
  • QuantumPhysics
  • quasars
  • Research
  • Rocks
  • Saturn
  • solar storm
  • Solar System
  • stars
  • sun
  • Technology
  • Universe
  • Uranus
  • Venus
  • Voyager

We bring you the latest news and updates in space exploration, innovation, and astronomy.

  • ABOUT US
  • CONTACT US
  • DISCLAIMER
  • PRIVACY POLICY
  • Terms of Service

© 2025 NASA Space News

No Result
View All Result
  • Home
  • Missions
  • Planets
  • Astrophysics
  • Technology
  • Research
  • About
  • Contact Us

© 2025 NASA Space News

Welcome Back!

Sign In with Facebook
Sign In with Google
Sign In with Linked In
OR

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In

Add New Playlist