• Latest
  • Trending
  • All
helium hydride ion

Helium Hydride Ion: Lab Recreates Universe’s First Molecule — A Game-Changer for Early Star Chemistry

August 18, 2025
Is dark matter controlled by

Is Dark Matter Controlled by a Secret ‘Fifth Force’?

November 6, 2025
BiRD and JWST Little Red Dots Redefine Black Hole Evolution

BiRD and JWST Little Red Dots Redefine Black Hole Evolution

November 6, 2025
ADVERTISEMENT
Lunar Optical Interferometer

Lunar Optical Interferometer: The Future of Space Telescopes?

November 6, 2025
Next Decade Venus Missions

Next Decade Venus Missions: Five Missions to Study Earth’s Evil Twin

November 5, 2025
Biggest Black Hole Flare Ever Detected

Biggest Black Hole Flare Ever Detected Releases 10 Trillion Suns’ Energy

November 5, 2025
Protostellar Disks Hide Forming Planets

Protostellar Disks Hide Forming Planets During Class 0/I Embedded Stages

November 5, 2025
Lanteris Space Systems, formerly Maxar Space Systems, had diversified from its traditional base of work on large GEO satellites to smaller LEO ones

Intuitive Machines Acquires Lanteris Space Systems for $800 Million Strategic Expansion

November 4, 2025
What are the cosmic voids made of

What Are the Cosmic Voids Made Of? Sparse Galaxies and Dark Matter Revealed

November 4, 2025
gas and dust into young stars

Magnetic Forces Funnel Gas and Dust Into Young Stars in SVS 13A Streamer

November 4, 2025
Universe’s Chaotic Childhood

Webb Telescope Reveals the Universe’s Chaotic Childhood in Early Galactic Kinematics

November 3, 2025
Water was Delivered to the Earth and Moon

Water was Delivered to the Earth and Moon by Ancient Meteorites, Chang’e-6 Reveals

November 3, 2025
How to Spot November’s Supermoon, the Year’s Brightest and Largest Lunar Event

How to Spot November’s Supermoon, the Year’s Brightest and Largest Lunar Event

November 3, 2025
ADVERTISEMENT
NASA Space News
No Result
View All Result
  • Home
  • Missions
    SIMP-0136 weather report

    SIMP-0136 Weather Report Reveals Storms and Auroras on a Rogue World

    Moon-forming disk

    JWST Reveals the Chemistry Inside a Moon-forming disk

    Little Red Dots

    Are the “Little Red Dots” Really Black Hole Stars? What JWST Is Revealing About the Early Universe

    Pismis 24 Star Cluster

    Inside the Lobster Nebula: Pismis 24 Star Cluster Unveiled

    Comet Lemmon

    A Rare Cosmic Visitor: Will Comet Lemmon Light Up October Sky?

    Butterfly Star

    The Butterfly Star: How James Webb New Discovery Unlocks Secrets of Planet Formation

    James Webb Space Telescope

    A Cosmic Masterpiece: James Webb Space Telescope Reveals the Heart of a Stellar Nursery

    interstellar comet

    A Cosmic Visitor Lights Up Our Solar System: The Story of Interstellar Comet 3I/ATLAS

    Interstellar comet 3I/ATLAS

    How TESS Spotted the Interstellar Comet 3I/ATLAS Early—and What It Means for Science

  • Planets
  • Astrophysics
  • Technology
  • Research
  • About
  • Contact Us
NASA Space News
No Result
View All Result
ADVERTISEMENT
Home News

Helium Hydride Ion: Lab Recreates Universe’s First Molecule — A Game-Changer for Early Star Chemistry

by nasaspacenews
August 18, 2025
in News
0
helium hydride ion

helium hydride ion

ADVERTISEMENT
Share on FacebookShare on Twitter

Helium Hydride Ion: An extraordinary experiment has given us a new window into the birth of the universe’s first stars. For the first time, scientists have recreated the very first molecule — helium hydride ion (HeH⁺) — under conditions similar to those that existed shortly after the Big Bang. The discovery, published in Astronomy & Astrophysics, reveals that this tiny molecule behaved far more powerfully than scientists once believed, reshaping our understanding of early star formation and the cosmic dawn.

Table of Contents

Toggle
  • Recreating the First Reactions
  • The Surprising Power of HeH⁺
  • Rethinking the Models
  • Building on Earlier Discoveries
  • Why This Matters
  • What Comes Next
  • conclusion

Recreating the First Reactions

At the Max Planck Institute for Nuclear Physics in Germany, researchers used the Cryogenic Storage Ring, a huge low-temperature simulation facility, to mimic the extreme cold of the early universe. Helium hydride ions were chilled to around –267 °C, stored for nearly a minute, and then forced to collide with heavy hydrogen atoms. These collisions simulated the very first chemical reactions that set the stage for star birth nearly 13.8 billion years ago.

What the scientists found was unexpected. Instead of slowing down as the temperature dropped, the reactions between helium hydride and hydrogen remained surprisingly steady. This directly contradicted long-standing theoretical models, which had assumed that low-temperature chemistry would stall out. The lab results showed that even in freezing cosmic conditions, helium hydride ions stayed active and effective — a revelation that rewrites the role of this molecule in cosmic history.

The Surprising Power of HeH⁺

Helium hydride was not just the first molecule to form after the Big Bang; it was also the spark that enabled the formation of molecular hydrogen (H₂), the most abundant molecule in the universe today. Molecular hydrogen was critical because it allowed the first gas clouds to cool and collapse under gravity, igniting the very first stars.

Until now, many models have underestimated how efficiently HeH⁺ could kickstart these cooling processes. The new results prove that it wasn’t just a minor player but a leading actor in the drama of star birth. Its strong dipole moment made it an excellent radiator of energy, meaning it could help gas clouds shed heat more effectively than previously thought. Without this cooling, the first stars might have taken much longer to form.

ADVERTISEMENT

Rethinking the Models

For decades, cosmologists relied on simulations that assumed helium hydride ions became less reactive at low temperatures. The new experiment proves those assumptions wrong. With corrected data in hand, researchers can now update their models of how quickly gas cooled and how fast stars could form in the universe’s first few hundred million years. This may shift cosmic timelines, altering our estimates of when the first starlight pierced the darkness after the Big Bang.

The discovery also highlights a bigger story in science: sometimes, only direct experimental testing can reveal the truth. Theoretical calculations can take us far, but the universe still surprises us when we recreate its conditions in the lab.

Building on Earlier Discoveries

This breakthrough builds on a milestone from 2019, when astronomers using NASA’s SOFIA observatory finally detected helium hydride in space, within the planetary nebula NGC 7027. That discovery confirmed that HeH⁺ was real and not just a theoretical construct. Now, this laboratory recreation completes the puzzle: not only does HeH⁺ exist, but we know how it behaves under the same cold conditions that prevailed after the Big Bang. Together, astronomy and laboratory science are telling a more complete story of cosmic chemistry.

Why This Matters

This discovery is more than just a technical curiosity. It reshapes our understanding of how the universe’s very first stars were born. The role of HeH⁺ as a catalyst for molecular hydrogen formation now looks central to explaining how dark, featureless gas transformed into luminous, star-filled skies. It means that our universe’s transition from darkness to light may have been faster and more efficient than older models suggested.

For the general public, the story is a reminder of how the tiniest particles can have the grandest effects. A molecule smaller than a speck of dust paved the way for galaxies, solar systems, and ultimately life itself. For scientists, it’s a challenge to update cosmological models and test further scenarios that may refine our picture of the early cosmos.

What Comes Next

The MPIK team isn’t stopping here. Future experiments will test helium hydride with neutral hydrogen and other isotopes, expanding the understanding of its reactivity. Astrophysicists, meanwhile, are working to weave the new data into computer simulations of the early universe. These combined efforts may soon reveal an even clearer picture of how the universe’s first stars flickered into existence.

This discovery also encourages new astronomical searches for signatures of HeH⁺ in space. By spotting more of it in cosmic environments, scientists can connect lab findings with observations, grounding theory in both data and experiment.


conclusion

Scientists have recreated the universe’s first molecule, helium hydride ion (HeH⁺), revealing its powerful role in early star formation. This breakthrough overturns old models of early-universe chemistry, reshapes our understanding of the cosmic dawn, and shows how tiny molecules paved the way for the first stars.

Explore the Cosmos with Us — Join NSN Today.

Tags: astronomycosmic originsEarly Universescience newsspace discoverystar formation

FEATURED POST

Is dark matter controlled by

Is Dark Matter Controlled by a Secret ‘Fifth Force’?

November 6, 2025
BiRD and JWST Little Red Dots Redefine Black Hole Evolution

BiRD and JWST Little Red Dots Redefine Black Hole Evolution

November 6, 2025
Lunar Optical Interferometer

Lunar Optical Interferometer: The Future of Space Telescopes?

November 6, 2025
Next Decade Venus Missions

Next Decade Venus Missions: Five Missions to Study Earth’s Evil Twin

November 5, 2025

EDITOR PICK'S

Is Dark Matter Controlled by a Secret ‘Fifth Force’?

November 6, 2025

BiRD and JWST Little Red Dots Redefine Black Hole Evolution

November 6, 2025

Lunar Optical Interferometer: The Future of Space Telescopes?

November 6, 2025

Next Decade Venus Missions: Five Missions to Study Earth’s Evil Twin

November 5, 2025

Biggest Black Hole Flare Ever Detected Releases 10 Trillion Suns’ Energy

November 5, 2025

Protostellar Disks Hide Forming Planets During Class 0/I Embedded Stages

November 5, 2025

Intuitive Machines Acquires Lanteris Space Systems for $800 Million Strategic Expansion

November 4, 2025

STAY CONNECTED

Recent News

Is dark matter controlled by

Is Dark Matter Controlled by a Secret ‘Fifth Force’?

November 6, 2025
BiRD and JWST Little Red Dots Redefine Black Hole Evolution

BiRD and JWST Little Red Dots Redefine Black Hole Evolution

November 6, 2025

Category

  • Asteroid
  • Astrobiology
  • Astrology
  • Astronomy
  • Astrophotography
  • Astrophysics
  • Auroras
  • Black holes
  • Comets
  • Cosmology
  • Dark energy
  • Dark Matter
  • Earth
  • Euclid
  • Exoplanets
  • Galaxies
  • Jupiter
  • JWST
  • Mars
  • Mercury
  • Meteor showers
  • Missions
  • Moon
  • Neptune
  • News
  • Others
  • Planets
  • QuantumPhysics
  • quasars
  • Research
  • Rocks
  • Saturn
  • solar storm
  • Solar System
  • stars
  • sun
  • Technology
  • Universe
  • Uranus
  • Venus
  • Voyager

We bring you the latest news and updates in space exploration, innovation, and astronomy.

  • ABOUT US
  • CONTACT US
  • DISCLAIMER
  • PRIVACY POLICY
  • Terms of Service

© 2025 NASA Space News

No Result
View All Result
  • Home
  • Missions
  • Planets
  • Astrophysics
  • Technology
  • Research
  • About
  • Contact Us

© 2025 NASA Space News

Welcome Back!

Sign In with Facebook
Sign In with Google
Sign In with Linked In
OR

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In

Add New Playlist